Numerical Approximation of the Maximal Solutions for a Class of Degenerate Hamilton-Jacobi Equations

نویسندگان

  • Fabio Camilli
  • Lars Grüne
چکیده

In this paper we study an approximation scheme for a class of Hamilton-Jacobi problems for which uniqueness of the viscosity solution does not hold. This class includes the Eikonal equation arising in the Shape from Shading problem. We show that, if an appropriate stability condition is satissed, the scheme converges to the maximal viscosity solution of the problem. Furthermore we give an estimate for the discretization error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Galerkin Method for Hamilton-Jacobi Equations with Uncertainty

We develop a class of stochastic numerical schemes for Hamilton-Jacobi equations with random inputs in initial data and/or the Hamiltonians. Since the gradient of the HamiltonJacobi equations gives a symmetric hyperbolic system, we utilize the generalized polynomial chaos (gPC) expansion with stochastic Galerkin procedure in random space and the JinXin relaxation approximation in physical space...

متن کامل

Continuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations

Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...

متن کامل

Large time behavior for some nonlinear degenerate parabolic equations

We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...

متن کامل

[hal-00327496, v1] Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data

Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...

متن کامل

Uniqueness results for convex Hamilton - Jacobi equations under p > 1 growth conditions on data

Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000